Format

Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 2014 Jan 1;592(1):49-65. doi: 10.1113/jphysiol.2013.257352. Epub 2013 Sep 16.

Inner retinal inhibition shapes the receptive field of retinal ganglion cells in primate.

Author information

1
D. A. Protti: Anderson Stuart Bldg (F13), The University of Sydney, NSW 2006, Australia. dario.protti@sydney.edu.au.

Abstract

The centre-surround organisation of receptive fields is a feature of most retinal ganglion cells (RGCs) and is critical for spatial discrimination and contrast detection. Although lateral inhibitory processes are known to be important in generating the receptive field surround, the contribution of each of the two synaptic layers in the primate retina remains unclear. Here we studied the spatial organisation of excitatory and inhibitory synaptic inputs onto ON and OFF ganglion cells in the primate retina. All RGCs showed an increase in excitation in response to stimulus of preferred polarity. Inhibition onto RGCs comprised two types of responses to preferred polarity: some RGCs showed an increase in inhibition whilst others showed removal of tonic inhibition. Excitatory inputs were strongly spatially tuned but inhibitory inputs showed more variable organisation: in some neurons they were as strongly tuned as excitation, and in others inhibitory inputs showed no spatial tuning. We targeted one source of inner retinal inhibition by functionally ablating spiking amacrine cells with bath application of tetrodotoxin (TTX). TTX significantly reduced the spatial tuning of excitatory inputs. In addition, TTX reduced inhibition onto those RGCs where a stimulus of preferred polarity increased inhibition. Reconstruction of the spatial tuning properties by somatic injection of excitatory and inhibitory synaptic conductances verified that TTX-mediated inhibition onto bipolar cells increases the strength of the surround in RGC spiking output. These results indicate that in the primate retina inhibitory mechanisms in the inner plexiform layer sharpen the spatial tuning of ganglion cells.

PMID:
24042496
PMCID:
PMC3903351
DOI:
10.1113/jphysiol.2013.257352
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center