Format

Send to

Choose Destination
Trends Biochem Sci. 2013 Nov;38(11):546-55. doi: 10.1016/j.tibs.2013.08.002. Epub 2013 Sep 10.

Tudor: a versatile family of histone methylation 'readers'.

Author information

1
Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.

Abstract

The Tudor domain comprises a family of motifs that mediate protein-protein interactions required for various DNA-templated biological processes. Emerging evidence demonstrates a versatility of the Tudor family domains by identifying their specific interactions to a wide variety of histone methylation marks. Here, we discuss novel functions of a number of Tudor-containing proteins [including Jumonji domain-containing 2A (JMJD2A), p53-binding protein 1 (53BP1), SAGA-associated factor 29 (SGF29), Spindlin1, ubiquitin-like with PHD and RING finger domains 1 (UHRF1), PHD finger protein 1 (PHF1), PHD finger protein 19 (PHF19), and SAWADEE homeodomain homolog 1 (SHH1)] in 'reading' unique methylation events on histones in order to facilitate DNA damage repair or regulate transcription. This review covers our recent understanding of the molecular bases for histone-Tudor interactions and their biological outcomes. As deregulation of Tudor-containing proteins is associated with certain human disorders, pharmacological targeting of Tudor interactions could provide new avenues for therapeutic intervention.

KEYWORDS:

53BP1; JMJD2A; PHF1; PHF19; SGF29; SHH1; Spindlin1; Tudor domain; UHRF1; epigenetic reader; histone methylation

PMID:
24035451
PMCID:
PMC3830939
DOI:
10.1016/j.tibs.2013.08.002
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center