Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Struct Biol. 2013 Dec;23(6):919-28. doi: 10.1016/ Epub 2013 Sep 11.

Solid state NMR and protein-protein interactions in membranes.

Author information

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, United States; National High Magnetic Field Lab, 1800 E. Paul Dirac Dr., Florida State University, Tallahassee, FL 32310, United States.


Solid state NMR spectroscopy has evolved rapidly in recent years into an excellent tool for the characterization of membrane proteins and their complexes. In the past few years it has also become clear that the structure of membrane proteins, especially helical membrane proteins is determined, in part, by the membrane environment. Therefore, the modeling of this environment by a liquid crystalline lipid bilayer for solid state NMR has generated a unique tool for the characterization of native conformational states, local and global dynamics, and high-resolution structure for these proteins. Protein-protein interactions can also benefit from this solid state NMR capability to characterize membrane proteins in a native-like environment. These complexes take the form of oligomeric structures and hetero-protein interactions both with water-soluble proteins and other membrane proteins.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center