Format

Send to

Choose Destination
J Evol Biol. 2013 Oct;26(10):2244-59. doi: 10.1111/jeb.12224. Epub 2013 Aug 29.

Nectar sugar composition of European Caryophylloideae (Caryophyllaceae) in relation to flower length, pollination biology and phylogeny.

Author information

1
School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.

Abstract

Floral nectar composition has been explained as an adaptation to factors that are either directly or indirectly related to pollinator attraction. However, it is often unclear whether the sugar composition is a direct adaptation to pollinator preferences. Firstly, the lower osmolality of sucrose solutions means that they evaporate more rapidly than hexose solutions, which might be one reason why sucrose-rich nectar is typically found in flowers with long tubes (adapted to long-tongued pollinators), where it is better protected from evaporation than in open or short-tubed flowers. Secondly, it can be assumed that temperature-dependent evaporation is generally lower during the night than during the day so that selection pressure to secrete nectar with high osmolality (i.e. hexose-rich solutions) is relaxed for night-active flowers pollinated at night. Thirdly, the breeding system may affect selection pressure on nectar traits; that is, for pollinator-independent, self-pollinated plants, a lower selective pressure on nectar traits can be assumed, leading to a higher variability of nectar sugar composition independent of pollinator preferences, nectar accessibility and nectar protection. To analyse the relations between flower tube length, day vs. night pollination and self-pollination, the nectar sugar composition was investigated in 78 European Caryophylloideae (Caryophyllaceae) with different pollination modes (diurnal, nocturnal, self-pollination) using high-performance liquid chromatography (HPLC). All Caryophylleae species (Dianthus and relatives) were found to have nectar with more than 50% sucrose, whereas the sugar composition of Sileneae species (Silene and relatives) ranged from 0% to 98.2%. In the genus Silene, a clear dichotomous distribution of sucrose- and hexose-dominant nectars is evident. We found a positive correlation between the flower tube length and sucrose content in Caryophylloideae, particularly in day-flowering species, using both conventional analyses and phylogenetically independent contrasts.

KEYWORDS:

Caryophyllaceae; Dianthus; Saponaria; Silene; diurnal; flower morphology; nectar sugar composition; nocturnal; pollination; selfing

PMID:
24028472
DOI:
10.1111/jeb.12224
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center