Format

Send to

Choose Destination
Proc SPIE Int Soc Opt Eng. 2012 Feb 23;8313:83134C.

Graphics Processing Unit (GPU) implementation of image processing algorithms to improve system performance of the Control, Acquisition, Processing, and Image Display System (CAPIDS) of the Micro-Angiographic Fluoroscope (MAF).

Author information

1
Department of Electrical Engineering, University at Buffalo ; Toshiba Stroke Research Center, University at Buffalo.

Abstract

We present the image processing upgrades implemented on a Graphics Processing Unit (GPU) in the Control, Acquisition, Processing, and Image Display System (CAPIDS) for the custom Micro-Angiographic Fluoroscope (MAF) detector. Most of the image processing currently implemented in the CAPIDS system is pixel independent; that is, the operation on each pixel is the same and the operation on one does not depend upon the result from the operation on the other, allowing the entire image to be processed in parallel. GPU hardware was developed for this kind of massive parallel processing implementation. Thus for an algorithm which has a high amount of parallelism, a GPU implementation is much faster than a CPU implementation. The image processing algorithm upgrades implemented on the CAPIDS system include flat field correction, temporal filtering, image subtraction, roadmap mask generation and display window and leveling. A comparison between the previous and the upgraded version of CAPIDS has been presented, to demonstrate how the improvement is achieved. By performing the image processing on a GPU, significant improvements (with respect to timing or frame rate) have been achieved, including stable operation of the system at 30 fps during a fluoroscopy run, a DSA run, a roadmap procedure and automatic image windowing and leveling during each frame.

Supplemental Content

Loading ...
Support Center