Format

Send to

Choose Destination
Front Cell Neurosci. 2013 Sep 3;7:129. doi: 10.3389/fncel.2013.00129. eCollection 2013.

Multiple effects of β-amyloid on single excitatory synaptic connections in the PFC.

Author information

1
School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University Wenzhou, Zhejiang, China ; Steward St. Elizabeth's Medical Center, Tufts Medical School, Tufts University Boston, MA, USA.

Abstract

Prefrontal cortex (PFC) is recognized as an AD-vulnerable region responsible for defects in cognitive functioning. Pyramidal cell (PC) connections are typically facilitating (F) or depressing (D) in PFC. Excitatory post-synaptic potentials (EPSPs) were recorded using patch-clamp from single connections in PFC slices of rats and ferrets in the presence of β-amyloid (Aβ). Synaptic transmission was significantly enhanced or reduced depending on their intrinsic type (facilitating or depressing), Aβ species (Aβ 40 or Aβ 42) and concentration (1-200 nM vs. 0.3-1 μ M). Nanomolar Aβ 40 and Aβ 42 had opposite effects on F-connections, resulting in fewer or increased EPSP failure rates, strengthening or weakening EPSPs and enhancing or inhibiting short-term potentiation [STP: synaptic augmentation (SA) and post-tetanic potentiation (PTP)], respectively. High Aβ 40 concentrations induced inhibition regardless of synaptic type. D-connections were inhibited regardless of Aβ species or concentration. The inhibition induced with bath application was hard to recover by washout, but a complete recovery was obtained with brief local application and prompt washout. Our data suggests that Aβ 40 acts on the prefrontal neuronal network by modulating facilitating and depressing synapses. At higher levels, both Aβ 40 and Aβ 42 inhibit synaptic activity and cause irreversible toxicity once diffusely accumulated in the synaptic environment.

KEYWORDS:

excitatory post-synaptic potential (EPSP); post-tetanic potentiation (PTP); short term potentiation (STP); synaptic augmentation (SA); synaptic connection; synaptic dynamics; β-amyloid (Aβ)

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center