Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomed Res Int. 2013;2013:819252. doi: 10.1155/2013/819252. Epub 2013 Aug 20.

Dissolution of silver nanowires and nanospheres dictates their toxicity to Escherichia coli.

Author information

1
Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia.

Abstract

Silver nanoparticles are extensively used in antibacterial applications. However, the mechanisms of their antibacterial action are not yet fully explored. We studied the solubility-driven toxicity of 100 × 6100 nm (mean primary diameter × length) silver nanowires (NWs) to recombinant bioluminescent Escherichia coli as a target representative of enteric pathogens. The bacteria were exposed to silver nanostructures in water to exclude the speciation-driven alterations. Spherical silver nanoparticles (83 nm mean primary size) were used as a control for the effect of NPs shape. Toxicity of both Ag NWs and spheres to E. coli was observed at similar nominal concentrations: the 4h EC50 values, calculated on the basis of inhibition of bacterial bioluminescence, were 0.42 ± 0.06 and 0.68 ± 0.01 mg Ag/L, respectively. Dissolution and bioavailability of Ag from NWs and nanospheres, analyzed with AAS or Ag-sensor bacteria, respectively, suggested that the toxic effects were caused by solubilized Ag(+) ions. Moreover, the antibacterial activities of Ag NWs suspension and its ultracentrifuged particle-free supernatant were equal. The latter indicated that the toxic effects of ~80-100 nm Ag nanostructures to Escherichia coli were solely dependent on their dissolution and no shape-induced/related effects were observed. Yet, additional nanospecific effects could come into play in case of smaller nanosilver particles.

PMID:
24024212
PMCID:
PMC3762159
DOI:
10.1155/2013/819252
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Hindawi Publishing Corporation Icon for PubMed Central
    Loading ...
    Support Center