Send to

Choose Destination
Inorg Chem. 2013 Oct 7;52(19):11638-49. doi: 10.1021/ic402073d. Epub 2013 Sep 9.

Zinc(II) and cadmium(II) monohydroxide bridged, dinuclear metallacycles: a unique case of concerted double Berry pseudorotation.

Author information

Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States.


The reactions of M(ClO4)2·6H2O [M = Zn(II), Cd(II)] and the ligands m-bis[bis(1-pyrazolyl)methyl]benzene, L(m), or m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene, L(m)*, in the presence of a base yield the hydroxide bridged dinuclear metallacycles [M2(μ-OH)(μ-L)2](ClO4)3, L = L(m), M = Zn(II) (1); L = L(m)*, M = Zn(II) (2), Cd(II) (3). In the solid state, the coordination environment of the metals is distorted trigonal bipyramidal with the bridging hydroxide in an equatorial position and M-O-M angles greater than 161°. The observation of two equal intensity resonances for each type of pyrazolyl-ring hydrogen in the (1)H NMR for all three complexes coupled with the determination of the hydrodynamic radius based on the diffusion coefficient of 1 that matches that observed in the crystal structure, demonstrate this structure is retained in solution. Additional proof of the dinuclear structures in solution is given by the (113)Cd NMR spectrum of [Cd2(μ-OH)(μ-L(m)*)2](ClO4)3 showing (111/113)Cd satellites (J(111)(Cd-)(113)(Cd) = 173 Hz). Complex 1 is dynamic in solution, with the resonances for each type of pyrazolyl-ring hydrogen broadening and averaging at higher temperatures. Detailed variable temperature studies show that ΔG(pz)(‡) = 15.2(±0.2) kcal/mol, ΔH(pz)(‡) = 6.6(±0.1) kcal/mol, and ΔS(pz)(‡) = -28.8(±0.4) cal/mol·K at 25 °C for this process. The same ΔG(‡) value for the dynamic process was also determined by saturation transfer experiments. The most plausible mechanism for this dynamic process, which exchanges the axial and equatorial positions of the pyrazolyl rings in the trigonal bipyramidal arrangement, involves Berry pseudorotation at both metal sites using the bridging oxygen atom as the pivot ligand, coupled with the ring flip of the ligand's phenylene spacer by 180°, a rearrangement process we termed the "Columbia Twist and Flip". This process was shown to be influenced by trace amounts of water in the solvent, with a linear relationship between the water concentration and ΔG(pz)(‡); increasing the water concentration lowers ΔG(pz)(‡). Spin saturation transfer experiments demonstrated the exchange of the hydrogens between the water in the solvent and the bridging hydroxide group, with ΔG(OH)(‡) = 16.8(±0.2) kcal/mol at 25 °C, a value larger than the barrier of ΔG(pz)(‡) = 15.2(±0.2) kcal/mol for the "Columbia Twist and Flip". Compounds 2 and 3 do not show dynamic behavior involving the pyrazolyl-rings in solution because of steric crowding caused by the methyl group substitution, but do show the exchange between the water in the solvent and the bridging hydroxide group.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center