Send to

Choose Destination
Nat Biotechnol. 2013 Dec;31(12):1133-6. doi: 10.1038/nbt.2701. Epub 2013 Sep 8.

Locus-specific editing of histone modifications at endogenous enhancers.

Author information

1] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [2] Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3] Broad Institute of Harvard and MIT, Cambridge Massachusetts, USA. [4] Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. [5].


Mammalian gene regulation is dependent on tissue-specific enhancers that can act across large distances to influence transcriptional activity. Mapping experiments have identified hundreds of thousands of putative enhancers whose functionality is supported by cell type-specific chromatin signatures and striking enrichments for disease-associated sequence variants. However, these studies did not address the in vivo functions of the putative elements or their chromatin states and did not determine which genes, if any, a given enhancer regulates. Here we present a strategy to investigate endogenous regulatory elements by selectively altering their chromatin state using programmable reagents. Transcription activator-like (TAL) effector repeat domains fused to the LSD1 histone demethylase efficiently remove enhancer-associated chromatin modifications from target loci, without affecting control regions. We find that inactivation of enhancer chromatin by these fusion proteins frequently causes downregulation of proximal genes, revealing enhancer target genes. Our study demonstrates the potential of epigenome editing tools to characterize an important class of functional genomic elements.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center