Send to

Choose Destination
Anal Chem. 2013 Sep 17;85(18):8749-56. doi: 10.1021/ac401836j. Epub 2013 Sep 5.

In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules.

Author information

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.


Microalgae, a group of microorganisms that grow using sunlight as the sole energy source and carbon dioxide as an only carbon source, have been considered as a feedstock of choice for the production of biofuels such as biodiesel. To explore the economic feasibility of such application, however, many technical hurdles must first be overcome; the selection and/or screening of competent species are some of the most important and yet challenging tasks. To greatly accelerate this rather slow and laborious step, we developed a droplet-based microfluidic system that uses alginate hydrogel microcapsules with a mean diameter of 26 μm, each of which is able to encapsulate a single microalgal cell. This novel device was successfully demonstrated using three microalgae species, namely, Chlorella vulgaris , Chlamydomonas sp., and Botryococcus braunii . In situ analysis of the lipid content of individual microalgal cells by nondestructive fluorescence staining using BODIPY (4,4-difluoro-1,3,5,7,-tetramethyl-4-bora-3a,4a-diaza-s-indacene) was possible. In all cases, we confirmed that the lipid content of microalgal species in alginate hydrogel microcapsules was comparable to that of free-living cells. Stochastic heterogeneity in the lipid content was verified under a highly viable physiological condition, implying that other analyses were possible after the determination of lipid content. Furthermore, the designed microwell arrays enabled us to distinguish the BODIPY fluorescence response of a single live alga within the microcapsules.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center