Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant J. 2013 Nov;76(4):648-60. doi: 10.1111/tpj.12324. Epub 2013 Oct 14.

Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope.

Author information

1
Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan; Department of Botany, University of Wisconsin, Madison, WI, 53706, USA.

Abstract

The starch-statolith hypothesis proposes that starch-filled amyloplasts act as statoliths in plant gravisensing, moving in response to the gravity vector and signaling its direction. However, recent studies suggest that amyloplasts show continuous, complex movements in Arabidopsis shoots, contradicting the idea of a so-called 'static' or 'settled' statolith. Here, we show that amyloplast movement underlies shoot gravisensing by using a custom-designed centrifuge microscope in combination with analysis of gravitropic mutants. The centrifuge microscope revealed that sedimentary movements of amyloplasts under hypergravity conditions are linearly correlated with gravitropic curvature in wild-type stems. We next analyzed the hypergravity response in the shoot gravitropism 2 (sgr2) mutant, which exhibits neither a shoot gravitropic response nor amyloplast sedimentation at 1 g. sgr2 mutants were able to sense and respond to gravity under 30 g conditions, during which the amyloplasts sedimented. These findings are consistent with amyloplast redistribution resulting from gravity-driven movements triggering shoot gravisensing. To further support this idea, we examined two additional gravitropic mutants, phosphoglucomutase (pgm) and sgr9, which show abnormal amyloplast distribution and reduced gravitropism at 1 g. We found that the correlation between hypergravity-induced amyloplast sedimentation and gravitropic curvature of these mutants was identical to that of wild-type plants. These observations suggest that Arabidopsis shoots have a gravisensing mechanism that linearly converts the number of amyloplasts that settle to the 'bottom' of the cell into gravitropic signals. Further, the restoration of the gravitropic response by hypergravity in the gravitropic mutants that we tested indicates that these lines probably have a functional gravisensing mechanism that is not triggered at 1 g.

KEYWORDS:

Arabidopsis; amyloplast; centrifuge microscope; gravisensing; hypergravity; starch-statolith hypothesis

PMID:
24004104
DOI:
10.1111/tpj.12324
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center