Send to

Choose Destination
Mol Cell Biochem. 2013 Dec;384(1-2):155-62. doi: 10.1007/s11010-013-1793-5. Epub 2013 Sep 4.

Hypoxia induces connexin 43 dysregulation by modulating matrix metalloproteinases via MAPK signaling.

Author information

Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, People's Republic of China.


Connexin 43 (Cx43) is a major structural protein found in the gap junctions of the ventricular myocardium and a major determinant of its electrical properties. The effects of matrix metalloproteinases (MMPs), the mitogen-activated protein kinase (MAPK) signaling pathway, transcription factor NF-kB, and activator protein-1 (AP-1)/c-Jun on the regulation of Cx43 gene expression in H9c2 cardiomyocytes were assessed. The MAPK signaling pathway (MEK/ERK1/2 and PI3K) and transcription factors NF-kB and AP-1/c-Jun were inhibited, then Cx43 expression was assessed using Western blot analysis, and MMP-9 activity was assessed using gelatin zymography. Hypoxia decreased the Cx43 protein level by approximately 30-50 %. Doxycycline (10 μg/mL), an inhibitor of MMP, markedly attenuated the hypoxia-induced downregulation of Cx43 protein expression at 6 h. The hypoxia-induced decrease in Cx43 protein expression was significantly reversed by U0126 (10 μM), a MEK/ERK1/2 inhibitor, at 6 and 12 h; LY294002 (30 μM), a PI3K inhibitor, downregulated Cx43 expression. Hypoxia-induced MMP-9 activation was inhibited by treatment with LY294002, U0126, and, most especially, U0126. JSH-23 (30 μM), an NF-kB inhibitor, and SP600125 (10 μM), an AP-1/c-Jun inhibitor, attenuated the loss of Cx43. These results suggest that MAPK signaling and the activities NF-kB and MMPs play an important roles in the regulation of Cx43 expression.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center