Format

Send to

Choose Destination
J Cereb Blood Flow Metab. 2013 Dec;33(12):1976-82. doi: 10.1038/jcbfm.2013.157. Epub 2013 Sep 4.

Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss.

Author information

1
1] Department of Anesthesia, Stanford University School of Medicine, Stanford, California, USA [2] Department of Emergency Medicine, Chonnam National University School of Medicine, Gwangju, South Korea.

Abstract

MicroRNA (miRNA), miR-181a, is enriched in the brain, and inhibition of miR-181a reduced astrocyte death in vitro and infarct volume after stroke in vivo. This study investigated the role of miR-181a in neuronal injury in vitro and hippocampal neuronal loss in vivo after forebrain ischemia. miR-181a levels were altered by transfection with mimic or antagomir. N2a cells subjected to serum deprivation and oxidative stress showed less cell death when miR-181a was reduced and increased death when miR-181a increased; protection was associated with increased Bcl-2 protein. In contrast, transfected primary neurons did not show altered levels of cell death when miR-181a levels changed. Naive male rats and rats stereotactically infused with miR-181a antagomir or control were subjected to forebrain ischemia and cornus ammonis (CA)1 neuronal survival and protein levels were assessed. Forebrain ischemia increased miR-181a expression and decreased Bcl-2 protein in the hippocampal CA1 region. miR-181a antagomir reduced miR-181a levels, reduced CA1 neuronal loss, increased Bcl-2 protein, and significantly prevented the decrease of glutamate transporter 1. Thus, miR-181a antagomir reduced evidence of astrocyte dysfunction and increased CA1 neuronal survival. miR-181a inhibition is thus a potential target in the setting of forebrain or global cerebral ischemia as well as focal ischemia.

PMID:
24002437
PMCID:
PMC3851907
DOI:
10.1038/jcbfm.2013.157
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center