Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Lung Cell Mol Physiol. 2013 Nov 15;305(10):L682-92. doi: 10.1152/ajplung.00102.2013. Epub 2013 Aug 30.

Active α-macroglobulin is a reservoir for urokinase after fibrinolytic therapy in rabbits with tetracycline-induced pleural injury and in human pleural fluids.

Author information

The Univ. of Texas Health Science Center at Tyler, 11937 US Highway 271, Lab C-6, Tyler, TX 75708. or


Intrapleural processing of prourokinase (scuPA) in tetracycline (TCN)-induced pleural injury in rabbits was evaluated to better understand the mechanisms governing successful scuPA-based intrapleural fibrinolytic therapy (IPFT), capable of clearing pleural adhesions in this model. Pleural fluid (PF) was withdrawn 0-80 min and 24 h after IPFT with scuPA (0-0.5 mg/kg), and activities of free urokinase (uPA), plasminogen activator inhibitor-1 (PAI-1), and uPA complexed with α-macroglobulin (αM) were assessed. Similar analyses were performed using PFs from patients with empyema, parapneumonic, and malignant pleural effusions. The peak of uPA activity (5-40 min) reciprocally correlated with the dose of intrapleural scuPA. Endogenous active PAI-1 (10-20 nM) decreased the rate of intrapleural scuPA activation. The slow step of intrapleural inactivation of free uPA (t1/2(β) = 40 ± 10 min) was dose independent and 6.7-fold slower than in blood. Up to 260 ± 70 nM of αM/uPA formed in vivo [second order association rate (kass) = 580 ± 60 M(-1)·s(-1)]. αM/uPA and products of its degradation contributed to durable intrapleural plasminogen activation up to 24 h after IPFT. Active PAI-1, active α2M, and α2M/uPA found in empyema, pneumonia, and malignant PFs demonstrate the capacity to support similar mechanisms in humans. Intrapleural scuPA processing differs from that in the bloodstream and includes 1) dose-dependent control of scuPA activation by endogenous active PAI-1; 2) two-step inactivation of free uPA with simultaneous formation of αM/uPA; and 3) slow intrapleural degradation of αM/uPA releasing active free uPA. This mechanism offers potential clinically relevant advantages that may enhance the bioavailability of intrapleural scuPA and may mitigate the risk of bleeding complications.


fibrinolytic therapy; human; pleural injury; rabbit model; urokinase; α-macroglobulin

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Atypon Icon for PubMed Central
    Loading ...
    Support Center