Send to

Choose Destination
Hum Mov Sci. 2013 Aug;32(4):753-67. doi: 10.1016/j.humov.2013.03.003. Epub 2013 Aug 30.

How much does the human medial gastrocnemius muscle contribute to ankle torques outside the sagittal plane?

Author information

Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Brazil; Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Politecnico di Torino, Italy. Electronic address:


Ankle movements in the frontal plane are less prominent though not less relevant than movements in the plantar or dorsal flexion direction. Walking on uneven terrains and standing on narrow stances are examples of circumstances likely imposing marked demands on the ankle medio-lateral stabilization. Following our previous evidence associating lateral bodily sways in quiet standing to activation of the medial gastrocnemius (MG) muscle, in this study we ask: how large is the MG contribution to ankle torque in the frontal plane? By arranging stimulation electrodes in a selective configuration, current pulses were applied primarily to the MG nerve branch of ten subjects. The contribution of populations of MG motor units of progressively smaller recruitment threshold to ankle torque was evaluated by increasing the stimulation amplitude by fixed amounts. From smallest intensities (12-32 mA) leading to the firstly observable MG twitches in force-plate recordings, current pulses reached intensities (56-90 mA) below which twitches in other muscles could not be observed from the skin. Key results showed a substantial MG torque contribution tending to rotate upward the foot medial aspect (ankle inversion). Nerve stimulation further revealed a linear relationship between the peak torque of ankle plantar flexion and inversion, across participants (Pearson R>.81, p<.01). Specifically, regardless of the current intensity applied, the peak torque of ankle inversion amounted to about 13% of plantar flexion peak torque. Physiologically, these results provide experimental evidence that MG activation may contribute to stabilize the body in the frontal plane, especially under situations of challenged stability.


2330; Ankle torque; Electrical stimulation; Gastrocnemius muscles

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center