Format

Send to

Choose Destination
See comment in PubMed Commons below
Int J Nanomedicine. 2013;8:3051-60. doi: 10.2147/IJN.S46748. Epub 2013 Aug 13.

Enhanced transdermal bioavailability of testosterone propionate via surfactant-modified ethosomes.

Author information

1
Liaoning Research Institute of Family Planning, Shenyang, Liaoning Province, People's Republic of China.

Abstract

The current investigation aimed to evaluate the transdermal potential of novel testosterone propionate (TP) ethosomes and liposomes prepared by surfactant modification. The effect of hexadecyl trimethyl ammonium bromide and cremophor EL-35 on the particle size and zeta potential of the prepared vesicles was investigated. The entrapment efficiency and stability, as well as in vitro and in vivo skin permeation, were studied with the various techniques, such as differential scanning calorimetry, confocal laser scanning microscopy, transmission electron microscopy, dynamic light scattering, and so on. The results indicated that the ethosomes were defined as spherical, unilamellar structures with low polydispersity (0.100 ± 0.015) and nanometric size (156.5 ± 3.5 nm). The entrapment efficiency of TP in ethosomal and liposomal carriers was 92.7% ± 3.7% and 64.7% ± 2.1%, respectively. The stability profile of the prepared TP ethosomal system assessed for 120 days revealed very low aggregation and very low growth in vesicular size. TP ethosomes also provided an enhanced transdermal flux of 37.85 ± 2.8 μg/cm(2)/hour and a decreased lag time of 0.18 hours across mouse skin. The skin permeation efficiency of the TP ethosomes as further assessed by confocal laser scanning microscopy revealed enhanced permeation of rhodamine red-loaded formulations to the deeper layers of the skin (260 μm) than that of the liposomal formation (120 μm).

KEYWORDS:

Testosterone propionate; confocal laser scanning microscopy; liposomes; surfactant-modified ethosomes

PMID:
23990718
PMCID:
PMC3748904
DOI:
10.2147/IJN.S46748
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Dove Medical Press Icon for PubMed Central
    Loading ...
    Support Center