Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2013 Nov 19;47(22):12768-74. doi: 10.1021/es401279u. Epub 2013 Nov 5.

Stereoisomeric isolation and stereoselective fate of insecticide paichongding in flooded paddy soils.

Author information

1
Institute of Nuclear Agricultural Sciences, Zhejiang University , Hangzhou 310029, China.

Abstract

Chiral insecticide paichongding (IPP) is one of the prospective substitutes for imidacloprid used in China due to its higher activity against imidacloprid-resistant insects. However, little is known about the fate of IPP in soils, including especially the different behaviors among its stereoisomers. In this study, four stereoisomers of IPP were separated and applied in flooded soils. Kinetics of mineralization, extractable residues, and bound residues showed diastereoselectivity in IPP degradation, with enantiomers (5S,7R)-IPP (IPP-SR) and (5R,7S)-IPP (IPP-RS) being more readily mineralized and preferentially bound to soils than enantiomers (5R,7R)-IPP (IPP-RR) and (5S,7S)-IPP (IPP-SS). The overall mineralization was rather limited and did not exceed 4% of the spiked rate. Concurrent to the decreases of extractable residues, the fraction of bound residues increased with time and reached about 34% of the applied radioactivity for (14)C-IPP-SR and (14)C-IPP-RS as compared to about 23% for (14)C-IPP-RR or (14)C-IPP-SS. Soil properties such as organic matter content and pH likely contributed to the variability. Relatively rapid formation of bound residue suggests that IPP may be quickly detoxified in flooded paddy soil, decreasing the potential for off-site transport such as leaching or runoff, especially for enantiomers IPP-SR and IPP-RS.

PMID:
23985071
DOI:
10.1021/es401279u
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center