Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuron. 2013 Sep 18;79(6):1183-96. doi: 10.1016/j.neuron.2013.06.048. Epub 2013 Aug 22.

A presynaptic ENaC channel drives homeostatic plasticity.

Author information

1
Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-0822, USA.

Abstract

An electrophysiology-based forward genetic screen has identified two genes, pickpocket11 (ppk11) and pickpocket16 (ppk16), as being necessary for the homeostatic modulation of presynaptic neurotransmitter release at the Drosophila neuromuscular junction (NMJ). Pickpocket genes encode Degenerin/Epithelial Sodium channel subunits (DEG/ENaC). We demonstrate that ppk11 and ppk16 are necessary in presynaptic motoneurons for both the acute induction and long-term maintenance of synaptic homeostasis. We show that ppk11 and ppk16 are cotranscribed as a single mRNA that is upregulated during homeostatic plasticity. Acute pharmacological inhibition of a PPK11- and PPK16-containing channel abolishes the expression of short- and long-term homeostatic plasticity without altering baseline presynaptic neurotransmitter release, indicating remarkable specificity for homeostatic plasticity rather than NMJ development. Finally, presynaptic calcium imaging experiments support a model in which a PPK11- and PPK16-containing DEG/ENaC channel modulates presynaptic membrane voltage and, thereby, controls calcium channel activity to homeostatically regulate neurotransmitter release.

PMID:
23973209
PMCID:
PMC3784986
DOI:
10.1016/j.neuron.2013.06.048
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center