Send to

Choose Destination
See comment in PubMed Commons below
Analyst. 2013 Oct 21;138(20):6171-6. doi: 10.1039/c3an00947e. Epub 2013 Aug 22.

The self-assembled Ru(bpy)3(PF6)2 nanoparticle on polystyrene microfibers and its application for ECL sensing.

Author information

College of Chemistry, Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China.


Ruthenium nanoparticle tris(2,2'-bipyridyl)ruthenium(II) bis(hexafluorophosphate) (Ru(bpy)3(PF6)2, RuNP) was self-assembled on polystyrene (PS) electrospun microfibers. The formation of RuNP is attributed to the sulfonated PS (SPS) microfibers' high adsorptive capability of 94% for Ru(bpy)3(2+), as well as the strong interaction between the Ru(bpy)3(2+) and ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate, BMIMPF6). The RuNP/SPS microfibers exhibited an enhanced electrochemiluminescence (ECL) emission, 2.3 times higher than that from Ru(bpy)3(2+)/SPS microfibers and 6.6 times higher than that from Ru(bpy)3(2+)/SPS continuous thin films. It is worthy of note that, as a result of the hydrophobic nature of the RuNP, the transfer of water-insoluble α-naphthol is accelerated, and thus the α-naphthol ECL quenching efficiency is enhanced. An ECL sensor based on the RuNP/SPS microfibers was fabricated and used to detect low concentrations of α-naphthol. The detection limit was of 1.0 nM (S/N > 3), and the linear response ranged from 0 to 18 μM. This sensor has been successfully applied to measure the α-naphthol content in pesticide carbaryl samples. Our work provides a very simple and cost-effective method to fabricate RuNP on polymer microfibers with great potential in the field of chemo/biosensors.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center