Format

Send to

Choose Destination
Front Hum Neurosci. 2013 Aug 6;7:395. doi: 10.3389/fnhum.2013.00395. eCollection 2013.

Traumatic brain injury, neuroimaging, and neurodegeneration.

Author information

1
Department of Psychology, Brigham Young University Provo, UT, USA ; Neuroscience Center, Brigham Young University Provo, UT, USA ; Department of Psychiatry, University of Utah Salt Lake City, UT, USA ; The Brain Institute of Utah, University of Utah Salt Lake City, UT, USA.

Abstract

Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

KEYWORDS:

TBI; brain development; neurodegeneration; neuroimaging; neuropsychiatric disorders; traumatic brain injury

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center