Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biomed Mater Res A. 2014 Aug;102(8):2554-64. doi: 10.1002/jbm.a.34925. Epub 2013 Sep 2.

Electric field stimulation through a biodegradable polypyrrole-co-polycaprolactone substrate enhances neural cell growth.

Author information

1
Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712.

Abstract

Nerve guidance conduits (NGCs) are FDA-approved devices used to bridge gaps across severed nerve cables and help direct axons sprouting from the proximal end toward the distal stump. In this article, we present the development of a novel electrically conductive, biodegradable NGC made from a polypyrrole-block-polycaprolactone (PPy-PCL) copolymer material laminated with poly(lactic-co-glycolic acid) (PLGA). The PPy-PCL has a bulk conductivity ranging 10-20 S/cm and loses 40 wt % after 7 months under physiologic conditions. Dorsal root ganglia (DRG) grown on flat PPy-PCL/PLGA material exposed to direct current electric fields (EF) of 100 mV/cm for 2 h increased axon growth by 13% (± 2%) toward either electrode of a 2-electrode setup, compared with control grown on identical substrates without EF exposure. Alternating current increased axon growth by 21% (±3%) without an observable directional preference, compared with the same control group. The results from this study demonstrate PLGA-coated PPy-PCL is a unique biodegradable material that can deliver substrate EF stimulation to improve axon growth for peripheral nerve repair.

KEYWORDS:

cell stimulation; degradable polypyrrole; electric field; nerve conduit; nerve regeneration

PMID:
23964001
PMCID:
PMC3931748
DOI:
10.1002/jbm.a.34925
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center