Format

Send to

Choose Destination
See comment in PubMed Commons below
ACS Appl Mater Interfaces. 2013 Sep 25;5(18):9205-11. doi: 10.1021/am402853q. Epub 2013 Sep 5.

Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells.

Author information

1
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou, Guangdong 510275, P. R. China.

Abstract

Ultraporous anatase TiO2 nanorods with a composite structure of mesopores and macropores fabricated via a simple microemulsion electrospinning approach were first used as photoanode materials for high-efficiency dye-sensitized solar cells (DSSCs). The special multiscale porous structure was formed by using low-cost paraffin oil microemulsion droplets as the soft template, which can not only provide enhanced adsorption sites for dye molecules but also facilitate the electrolyte diffusion. The morphology, porosity, and photovoltaic and electron dynamic characteristics of the porous TiO2 nanorod based DSSCs were investigated in detail by scanning electron microscopy (SEM), N2 sorption measurements, current density-voltage (J-V) curves, UV-vis diffuse reflectance spectra, electrochemical impedance spectroscopy (EIS), intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS), and open-circuit voltage decay (OCVD) measurements. The results revealed that, although fewer amounts of dyes were anchored on the porous TiO2 nanorod films, they exhibited stronger light scattering ability, fast electrolyte diffusion, and extended electron lifetime compared to the commercial P25 nanoparticles. A power conversion efficiency of 6.07% was obtained for the porous TiO2 nanorod based DSSCs. Moreover, this value can be further improved to 8.53% when bilayer structured photoanode with porous TiO2 nanorods acting as the light scattering layer was constructed. This study demonstrated that the porous TiO2 nanorods can work as promising photoanode materials for DSSCs.

PMID:
23962052
DOI:
10.1021/am402853q
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center