Format

Send to

Choose Destination
Pflugers Arch. 2014 Mar;466(3):477-90. doi: 10.1007/s00424-013-1317-x. Epub 2013 Aug 20.

Relative contribution of different transmembrane segments to the CFTR chloride channel pore.

Author information

1
Department of Physiology and Biophysics, Dalhousie University, PO Box 15000 Halifax, Nova Scotia, B3H 4R2, Canada.

Abstract

The membrane-spanning part of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel comprises 12 transmembrane (TM) α-helices, arranged in 2 symmetrical groups of 6. However, those TMs that line the channel pore are not completely defined. We used patch clamp recording to compare the accessibility of cysteine-reactive reagents to cysteines introduced into different TMs. Several residues in TM11 were accessible to extracellular and/or intracellular cysteine reactive reagents; however, no reactive cysteines were identified in TMs 5 or 11. Two accessible residues in TM11 (T1115C and S1118C) were found to be more readily modified from the extracellular solution in closed channels, but more readily modified from the intracellular solution in open channels, as previously reported for T338C in TM6. However, the effects of mutagenesis at S1118 (TM11) on a range of pore functional properties were relatively minor compared to the large effects of mutagenesis at T338 (TM6). Our results suggest that the CFTR pore is lined by TM11 but not by TM5 or TM7. Comparison with previous works therefore suggests that the pore is lined by TMs 1, 6, 11, and 12, suggesting that the structure of the open channel pore is asymmetric in terms of the contributions of different TMs. Although TMs 6 and 11 appear to undergo similar conformational changes during channel opening and closing, the influence of these two TMs on the functional properties of the narrowest region of the pore is clearly unequal.

PMID:
23955087
DOI:
10.1007/s00424-013-1317-x
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center