Format

Send to

Choose Destination
Cell Host Microbe. 2013 Aug 14;14(2):159-70. doi: 10.1016/j.chom.2013.07.009.

PPARγ-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages.

Author information

1
Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA.

Abstract

Eradication of persistent intracellular bacterial pathogens with antibiotic therapy is often slow or incomplete. However, strategies to augment antibiotics are hampered by our poor understanding of the nutritional environment that sustains chronic infection. Here we show that the intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAMs), which are more abundant during chronic infection. A metabolic shift induced by peroxisome proliferator-activated receptor γ (PPARγ), which increases intracellular glucose availability, is identified as a causal mechanism promoting enhanced bacterial survival in AAMs. Glucose uptake was crucial for increased replication of B. abortus in AAMs, and for chronic infection, as inactivation of the bacterial glucose transporter gluP reduced both intracellular survival in AAMs and persistence in mice. Thus, a shift in intracellular nutrient availability induced by PPARγ promotes chronic persistence of B. abortus within AAMs, and targeting this pathway may aid in eradicating chronic infection.

Comment in

PMID:
23954155
PMCID:
PMC3777723
DOI:
10.1016/j.chom.2013.07.009
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center