Format

Send to

Choose Destination
Elife. 2013 Aug 14;2:e00785. doi: 10.7554/eLife.00785.

MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades.

Author information

1
Department of Molecular Biology , University of Texas Southwestern Medical Center , Dallas , United States.

Abstract

RNA virus infections are detected by the RIG-I family of receptors, which induce type-I interferons through the mitochondrial protein MAVS. MAVS forms large prion-like polymers that activate the cytosolic kinases IKK and TBK1, which in turn activate NF-κB and IRF3, respectively, to induce interferons. Here we show that MAVS polymers recruit several TRAF proteins, including TRAF2, TRAF5, and TRAF6, through distinct TRAF-binding motifs. Mutations of these motifs that disrupted MAVS binding to TRAFs abrogated its ability to activate IRF3. IRF3 activation was also abolished in cells lacking TRAF2, 5, and 6. These TRAF proteins promoted ubiquitination reactions that recruited NEMO to the MAVS signaling complex, leading to the activation of IKK and TBK1. These results delineate the mechanism of MAVS signaling and reveal that TRAF2, 5, and 6, which are normally associated with NF-κB activation, also play a crucial role in IRF3 activation in antiviral immune responses. DOI:http://dx.doi.org/10.7554/eLife.00785.001.

KEYWORDS:

Human; MAVS; Mouse; Viruses; innate immunity; mitochondria; signaling; ubiquitin; virus

PMID:
23951545
PMCID:
PMC3743401
DOI:
10.7554/eLife.00785
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for eLife Sciences Publications, Ltd Icon for PubMed Central
Loading ...
Support Center