Hypoxia-inducible factor-2α and TGF-β signaling interact to promote normoxic glomerular fibrogenesis

Am J Physiol Renal Physiol. 2013 Nov 1;305(9):F1323-31. doi: 10.1152/ajprenal.00155.2013. Epub 2013 Aug 14.

Abstract

Hypoxia-inducible factors (HIFs) are transcription factors consisting of an oxygen-sensitive α-subunit binding to a stable β-subunit. HIFs regulate multiple signaling pathways that could contribute to fibrogenesis, supporting their potential role in hypoxia-mediated renal fibrosis. We previously reported that HIF-1 is upregulated and required for transforming growth factor (TGF)-β induction of collagen in renal tubular cells. Here, we performed in vitro and in vivo studies of potential glomerular crosstalk between TGF-β and normoxic HIF signaling. HIF-α has two major isoforms, HIF-1α and HIF-2α with different target gene sets. In cultured human mesangial cells, TGF-β1 treatment increased both HIF-1α and HIF-2α expression in normoxia. TGF-β1 did not increase HIF-1α/2α mRNA levels nor decrease the rate of protein degradation, suggesting that it enhances HIF-1α/2α expression through translation. TGF-β receptor (ALK5) kinase activity was required for increased, TGF-β-stimulated HIF-α expression in response to TGF-β, and inhibiting PI3-kinase markedly decreased HIF-α expression. Blocking HIF-1α/2α expression using siRNA decreased basal and TGF-β1-stimulated type I collagen expression, while overexpressing nondegradable HIF-α increased the collagen response, with HIF-2α being significantly more effective than HIF-1α. In adriamycin-induced mouse glomerulosclerosis, HIF-2α target genes were upregulated in sclerosing glomeruli. Taken together, our data demonstrate potential signaling interaction between TGF-β and HIFs to promote renal fibrogenesis in normoxia and suggest that the HIF-2α isoform is more important during glomerulosclerosis.

Keywords: HIF; TGF-β; collagen; fibrosis.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Basic Helix-Loop-Helix Transcription Factors / physiology*
  • Cells, Cultured
  • Collagen / metabolism*
  • Fibrosis
  • Glomerulosclerosis, Focal Segmental / metabolism
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / physiology*
  • Male
  • Mesangial Cells / metabolism*
  • Mice
  • Mice, 129 Strain
  • Oxygen
  • Phosphatidylinositol 3-Kinases / metabolism
  • Protein Serine-Threonine Kinases / metabolism
  • Receptor, Transforming Growth Factor-beta Type I
  • Receptors, Transforming Growth Factor beta / metabolism
  • Signal Transduction / physiology*
  • Transforming Growth Factor beta / physiology*

Substances

  • Basic Helix-Loop-Helix Transcription Factors
  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Receptors, Transforming Growth Factor beta
  • Transforming Growth Factor beta
  • endothelial PAS domain-containing protein 1
  • Collagen
  • Protein Serine-Threonine Kinases
  • Receptor, Transforming Growth Factor-beta Type I
  • TGFBR1 protein, human
  • Tgfbr1 protein, mouse
  • Oxygen