Format

Send to

Choose Destination
See comment in PubMed Commons below
Soc Cogn Affect Neurosci. 2014 Oct;9(10):1443-50. doi: 10.1093/scan/nst136. Epub 2013 Aug 14.

Neural correlate of autistic-like traits and a common allele in the oxytocin receptor gene.

Author information

  • 1Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, Department of Radiology, Nihon University School of Medicine, 30-1 Oyaguchi kami-cho, Itabashi-ku, Tokyo 173-8610, Japan, Global Center of Excellence (COE) Program, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Department of Child Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Health Service Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, and Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.
  • 2Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, Department of Radiology, Nihon University School of Medicine, 30-1 Oyaguchi kami-cho, Itabashi-ku, Tokyo 173-8610, Japan, Global Center of Excellence (COE) Program, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Department of Child Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Health Service Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, and Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, Department of Radiology, Nihon University School of Medicine, 30-1 Oyaguchi kami-cho, Itabashi-ku, Tokyo 173-8610, Japan, Global Center of Excellence (COE) Program, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Department of Child Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Health Service Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, and Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.
  • 3Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, Department of Radiology, Nihon University School of Medicine, 30-1 Oyaguchi kami-cho, Itabashi-ku, Tokyo 173-8610, Japan, Global Center of Excellence (COE) Program, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Department of Child Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Health Service Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, and Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, Department of Radiology, Nihon University School of Medicine, 30-1 Oyaguchi kami-cho, Itabashi-ku, Tokyo 173-8610, Japan, Global Center of Excellence (COE) Program, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Department of Child Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan, Health Service Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, and Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan yamasue-tky@umin.ac.jp.

Abstract

Sub-clinical autistic-like traits (ALTs) are continuously distributed in the general population and genetically linked to autism. Although identifying the neurogenetic backgrounds of ALTs might enhance our ability to identify those of autism, they are largely unstudied. Here, we have examined the neuroanatomical basis of ALTs and their association with the oxytocin receptor gene (OXTR) rs2254298A, a known risk allele for autism in Asian populations which has also been implicated in limbic-paralimbic brain structures. First, we extracted a four-factor structure of ALTs, as measured using the Autism-Spectrum Quotient, including 'prosociality', 'communication', 'details/patterns' and 'imagination' in 135 neurotypical adults (79 men, 56 women) to reduce the genetic heterogeneity of ALTs. Then, in the same population, voxel-based morphometry revealed that lower 'prosociality', which indicates strong ALTs, was significantly correlated to smaller regional grey matter volume in the right insula in males. Males with lower 'prosociality' also had less interregional structural coupling between the right insula and the ventral anterior cingulate cortex. Furthermore, males with OXTR rs2254298A had significantly smaller grey matter volume in the right insula. These results show that decreased volume of the insula is a neuroanatomical correlate of ALTs and a potential intermediate phenotype linking ALTs with OXTR in male subjects.

KEYWORDS:

asperger; endophenotype; imaging genetics; pervasive developmental disorder; sex difference

PMID:
23946005
PMCID:
PMC4187262
DOI:
10.1093/scan/nst136
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center