Format

Send to

Choose Destination
RNA. 2013 Oct;19(10):1355-62. doi: 10.1261/rna.039917.113. Epub 2013 Aug 14.

2'-Phosphate cyclase activity of RtcA: a potential rationale for the operon organization of RtcA with an RNA repair ligase RtcB in Escherichia coli and other bacterial taxa.

Abstract

RNA terminal phosphate cyclase catalyzes the ATP-dependent conversion of a 3'-phosphate RNA end to a 2',3'-cyclic phosphate via covalent enzyme-(histidinyl-Nε)-AMP and RNA(3')pp(5')A intermediates. Here, we report that Escherichia coli RtcA (and its human homolog Rtc1) are capable of cyclizing a 2'-phosphate RNA end in high yield. The rate of 2'-phosphate cyclization by RtcA is five orders of magnitude slower than 3'-phosphate cyclization, notwithstanding that RtcA binds with similar affinity to RNA3'p and RNA2'p substrates. These findings expand the functional repertoire of RNA cyclase and suggest that phosphate geometry during adenylate transfer to RNA is a major factor in the kinetics of cyclization. RtcA is coregulated in an operon with an RNA ligase, RtcB, that splices RNA 5'-OH ends to either 3'-phosphate or 2',3'-cyclic phosphate ends. Our results suggest that RtcA might serve an end healing function in an RNA repair pathway, by converting RNA 2'-phosphates, which cannot be spliced by RtcB, to 2',3'-cyclic phosphates that can be sealed. The rtcBA operon is controlled by the σ(54) coactivator RtcR encoded by an adjacent gene. This operon arrangement is conserved in diverse bacterial taxa, many of which have also incorporated the RNA-binding protein Ro (which is implicated in RNA quality control under stress conditions) as a coregulated component of the operon.

KEYWORDS:

2′,3′-cyclic phosphate ends; RNA repair

PMID:
23945037
PMCID:
PMC3854526
DOI:
10.1261/rna.039917.113
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center