Format

Send to

Choose Destination
Nat Rev Neurol. 2013 Oct;9(10):583-98. doi: 10.1038/nrneurol.2013.163. Epub 2013 Aug 13.

Lysosomal storage diseases--the horizon expands.

Author information

1
Department of Paediatrics and Adolescent Medicine, Biochemistry and Molecular Genetics, American University of Beirut, PO Box 11-0236, Riad El-Solh, 1107 2020, Beirut, Lebanon. rb50@aub.edu.lb.

Abstract

Since the discovery of the lysosome in 1955, advances have been made in understanding the key roles and functions of this organelle. The concept of lysosomal storage diseases (LSDs)--disorders characterized by aberrant, excessive storage of cellular material in lysosomes--developed following the discovery of α-glucosidase deficiency as the cause of Pompe disease in 1963. Great strides have since been made in understanding the pathobiology of LSDs and the neuronal ceroid lipofuscinoses (NCLs). The NCLs are neurodegenerative disorders that display symptoms of cognitive and motor decline, seizures, blindness, early death, and accumulation of lipofuscin in various cell types, and also show some similarities to 'classic' LSDs. Defective lysosomal storage can occur in many cell types, but the CNS and PNS are particularly vulnerable to LSDs and NCLs, being affected in two-thirds of these disorders. Most LSDs are inherited in an autosomal recessive manner, with the exception of X-linked Hunter disease, Fabry disease and Danon disease, and a variant type of adult NCL (Kuf disease). This Review provides a summary of known LSDs, and the pathways affected in these disorders. Existing therapies and barriers to development of novel and improved treatments for LSDs and NCLs are also discussed.

PMID:
23938739
DOI:
10.1038/nrneurol.2013.163
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center