Send to

Choose Destination
See comment in PubMed Commons below
Hum Mol Genet. 2014 Jan 1;23(1):1-11. doi: 10.1093/hmg/ddt387. Epub 2013 Aug 9.

Depletion of extracellular signal-regulated kinase 1 in mice with cardiomyopathy caused by lamin A/C gene mutation partially prevents pathology before isoenzyme activation.

Author information

Department of Medicine and.


Mutations in the lamin A/C gene (LMNA) encoding A-type nuclear lamins cause dilated cardiomyopathy with variable muscular dystrophy. These mutations enhance mitogen-activated protein kinase signaling in the heart and pharmacological inhibition of extracellular signal-regulated kinase (ERK) 1 and 2 improves cardiac function in Lmna(H222P/H222P) mice. In the current study, we crossed mice lacking ERK1 to Lmna(H222P/H222P) mice and examined cardiac performance and survival. Male Lmna(H222P/H222P)/Erk1(-/-) mice lacking ERK1 had smaller left ventricular end systolic diameters and increased fractional shortening (FS) at 16 weeks of age than Lmna(H222P/H222P/)Erk1(+/+) mice. Their mean survival was also significantly longer. However, the improved cardiac function was abrogated at 20 weeks of age concurrent with an increased activity of ERK2. Lmna(H222P/H222P)/Erk1(-/-) mice treated with an inhibitor of ERK1/2 activation had smaller left ventricular diameters and increased FS at 20 weeks of age. These results provide genetic evidence that ERK1 and ERK2 contribute to the development of cardiomyopathy caused by LMNA mutations and reveal interplay between these isoenzymes in maintaining a combined pathological activity in heart.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center