Format

Send to

Choose Destination
Dev Biol. 2013 Oct 1;382(1):27-37. doi: 10.1016/j.ydbio.2013.08.003. Epub 2013 Aug 8.

Inactivation of Tgfbr2 in Osterix-Cre expressing dental mesenchyme disrupts molar root formation.

Author information

1
Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
2
Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
#
Contributed equally

Abstract

It has been difficult to examine the role of TGF-ß in post-natal tooth development due to perinatal lethality in many of the signaling deficient mouse models. To address the role of Tgfbr2 in postnatal tooth development, we generated a mouse in which Tgfbr2 was deleted in odontoblast- and bone-producing mesenchyme. Osx-Cre;Tgfbr2(fl/fl) mice were generated (Tgfbr2(cko)) and post-natal tooth development was compared in Tgfbr2(cko) and control littermates. X-ray and μCT analysis showed that in Tgfbr2(cko) mice radicular dentin matrix density was reduced in the molars. Molar shape was abnormal and molar eruption was delayed in the mutant mice. Most significantly, defects in root formation, including failure of the root to elongate, were observed by postnatal day 10. Immunostaining for Keratin-14 (K14) was used to delineate Hertwig's epithelial root sheath (HERS). The results showed a delay in elongation and disorganization of the HERS in Tgfbr2(cko) mice. In addition, the HERS was maintained and the break up into epithelial rests was attenuated suggesting that Tgfbr2 acts on dental mesenchyme to indirectly regulate the formation and maintenance of the HERS. Altered odontoblast organization and reduced Dspp expression indicated that odontoblast differentiation was disrupted in the mutant mice likely contributing to the defect in root formation. Nevertheless, expression of Nfic, a key mesenchymal regulator of root development, was similar in Tgfbr2(cko) mice and controls. The number of osteoclasts in the bone surrounding the tooth was reduced and osteoblast differentiation was disrupted likely contributing to both root and eruption defects. We conclude that Tgfbr2 in dental mesenchyme and bone is required for tooth development particularly root formation.

KEYWORDS:

Eruption; HERS; Odontoblast; Osteoclast

PMID:
23933490
PMCID:
PMC3783640
DOI:
10.1016/j.ydbio.2013.08.003
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center