Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2013 Nov;34(33):8235-40. doi: 10.1016/j.biomaterials.2013.07.057. Epub 2013 Aug 6.

Diaphragmatic muscle reconstruction with an aligned electrospun poly(ε-caprolactone)/collagen hybrid scaffold.

Author information

1
Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.

Abstract

Large diaphragmatic muscle defects in congenital diaphragmatic hernia (CDH) are reconstructed by prosthetic materials or autologous grafts, which are associated with high complications and reherniation. In this study we examined the feasibility of using aligned electrospun poly(ε-caprolactone) (PCL)/collagen hybrid scaffolds for diaphragmatic muscle reconstruction. The hybrid scaffolds were implanted into a central left hemi-diaphragmatic defect (approximately 70% of the diaphragmatic tissue on the left side) in rats. Radiographic and magnetic resonance imaging (MRI) analyses showed no evidence of herniation or retraction up to 6 months after implantation. Histological and immunohistochemical evaluations revealed ingrowth of muscle tissue into the scaffolds. The mechanical properties of the retrieved diaphragmatic scaffolds were similar to those of normal diaphragm at the designated time points. Our results show that the aligned electrospun hybrid scaffolds allowed muscle cell migration and tissue formation. The aligned scaffolds may provide implantable functional muscle tissues for patients with diaphragmatic muscle defects.

KEYWORDS:

Collagen; Diaphragmatic muscle; Electrospinning; Poly(ε-caprolactone); Reconstruction; Tissue engineering

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center