Format

Send to

Choose Destination
J Am Chem Soc. 2013 Aug 28;135(34):12480-96. doi: 10.1021/ja405051f. Epub 2013 Aug 20.

Biocatalysis in organic chemistry and biotechnology: past, present, and future.

Author information

1
Department of Chemistry, Philipps-Universit├Ąt Marburg, Hans-Meerwein Strasse, 35032 Marburg, Germany. reetz@mpi-muelheim.mpg.de

Abstract

Enzymes as catalysts in synthetic organic chemistry gained importance in the latter half of the 20th century, but nevertheless suffered from two major limitations. First, many enzymes were not accessible in large enough quantities for practical applications. The advent of recombinant DNA technology changed this dramatically in the late 1970s. Second, many enzymes showed a narrow substrate scope, often poor stereo- and/or regioselectivity and/or insufficient stability under operating conditions. With the development of directed evolution beginning in the 1990s and continuing to the present day, all of these problems can be addressed and generally solved. The present Perspective focuses on these and other developments which have popularized enzymes as part of the toolkit of synthetic organic chemists and biotechnologists. Included is a discussion of the scope and limitation of cascade reactions using enzyme mixtures in vitro and of metabolic engineering of pathways in cells as factories for the production of simple compounds such as biofuels and complex natural products. Future trends and problems are also highlighted, as is the discussion concerning biocatalysis versus nonbiological catalysis in synthetic organic chemistry. This Perspective does not constitute a comprehensive review, and therefore the author apologizes to those researchers whose work is not specifically treated here.

PMID:
23930719
DOI:
10.1021/ja405051f
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center