Send to

Choose Destination
Exp Biol Med (Maywood). 2013 Sep;238(9):1033-46. doi: 10.1177/1535370213497322. Epub 2013 Aug 7.

Mammary gland morphology and gene expression signature of weanling male and female rats following exposure to exogenous estradiol.

Author information

Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA.


In order to characterize the actions of xenoestrogens, it is essential to possess a solid portrait of the physiological effects of exogenous estradiol. We assessed effects of three doses of exogenous estradiol (E2) (0.1, 1.0 and 10 µg/kg/day) given between postnatal days 21 and 33 on the mammary gland morphology and gene expression profiles of male and female rats compared to vehicle-treated controls. The male mammary gland was more responsive to E2 treatment than in females, with 509 genes regulated >2-fold in a dose-dependent manner in males and only 174 in females. In males, E2 treatment significantly (P < 0.01) increased the number of terminal end buds (TEBs) and the expression of proliferating cell nuclear antigen (PCNA) protein (P < 0.05), both of which are indicators of proliferation. This change was linked to a significant increase (P < 0.05) in the expression of the gene encoding amphiregulin, which is known to induce TEB formation. There was also a dose-dependent increase (P < 0.001) in the estrogen-regulated gene encoding the progesterone receptor. In intact females, despite lack of changes in mammary morphology, we observed a dose-dependent increase (P < 0.05) in the expression of genes encoding three milk proteins: whey acidic protein, casein beta and casein kappa. There was a significant (P < 0.05) downregulation of both estrogen receptors in response to E2 treatment. These results suggest that mammary glands of male rats are very sensitive to exogenous E2 during development post-weaning. The dose-dependent increase observed in amphiregulin and progesterone receptor gene expression was linked to morphological changes and represents a reliable and sensitive tool to evaluate estrogenicity. In contrast, intact weanling female rats were less responsive.


17β-Estradiol; mammary gland; terminal end buds

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center