Send to

Choose Destination
Theor Appl Genet. 2013 Nov;126(11):2803-24. doi: 10.1007/s00122-013-2173-y. Epub 2013 Aug 6.

Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria.

Author information

Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.


Spring growth in barley controlled by natural variation at Vrn-H1 and Vrn-H2 improved yield stability in marginal Syrian environments. The objective of the present study was to identify QTL influencing agronomic performance in rain-fed Mediterranean environments in a recombinant inbred line (RIL) population, ARKE derived from the Syrian barley landrace, Arta and the Australian feed cultivar, Keel. The population was field tested for agronomic performance at two locations in Syria for 4 years with two sowing dates, in autumn and winter. Genotypic variability in yield of the RIL population was mainly affected by year-to-year variation presumably caused by inter-annual differences in rainfall distribution. The spring growth habit and early flowering inherited from the Australian cultivar Keel increased plant height and biomass and improved yield stability in Syrian environments. QTL for yield and biomass coincided with the map location of flowering time genes, in particular the vernalisation genes Vrn-H1 and Vrn-H2. In marginal environments with terminal drought, the Vrn-H1 allele inherited from Keel improved final biomass and yield. Under changing climate conditions, such as shorter winters, reduced rainfall, and early summer drought, spring barley might thus outperform the traditional vernalisation-sensitive Syrian landraces. We present the ARKE population as a valuable genetic resource to further elucidate the genetics of drought adaptation of barley in the field.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center