Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2013 Aug 8;51(3):397-404. doi: 10.1016/j.molcel.2013.06.019. Epub 2013 Aug 1.

MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation.

Author information

1
Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

Abstract

Redox control of protein function involves oxidation and reduction of amino acid residues, but the mechanisms and regulators involved are insufficiently understood. Here, we report that in conjunction with Mical proteins, methionine-R-sulfoxide reductase B1 (MsrB1) regulates mammalian actin assembly via stereoselective methionine oxidation and reduction in a reversible, site-specific manner. Two methionine residues in actin are specifically converted to methionine-R-sulfoxide by Mical1 and Mical2 and reduced back to methionine by selenoprotein MsrB1, supporting actin disassembly and assembly, respectively. Macrophages utilize this redox control during cellular activation by stimulating MsrB1 expression and activity as a part of innate immunity. We identified the regulatory role of MsrB1 as a Mical antagonist in orchestrating actin dynamics and macrophage function. More generally, our study shows that proteins can be regulated by reversible site-specific methionine-R-sulfoxidation.

PMID:
23911929
PMCID:
PMC4262529
DOI:
10.1016/j.molcel.2013.06.019
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center