Format

Send to

Choose Destination
See comment in PubMed Commons below
Nutr Cancer. 2013;65(6):866-73. doi: 10.1080/01635581.2013.802000.

Vitamin B12 and methionine deficiencies induce genome damage measured using the cytokinesis-block micronucleus cytome assay in human B lymphoblastoid cell lines.

Author information

1
School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China. xiayu98wu@163.com

Abstract

One-carbon metabolism is a network of interrelated biochemical reactions that has 2 major functions: DNA methylation and DNA synthesis. Methionine (Met), an essential amino acid, is converted to S-adenosyl-methionine (SAM), the body's main methyl group donor, which is converted to S-adenosylhomocysteine during methylation reactions. Vitamin B12 (B12) acts as a coenzyme of methionine synthase, which is required for the synthesis of Met and SAM. To determine the effects of Met and B12, we used the cytokinesis-block micronucleus assay in GM13705 and GM12593 cell line cultures exposed to 13 unique combinations of B12 and Met concentrations over 9 days. The nutrient levels chosen span the normal physiological ranges in humans. The Met-B12 concentration significantly and negatively correlated with all markers of genotoxicity in the 2 cell lines tested. In both cell lines, all markers of genotoxicity were significantly higher when treated with 15 μM Met than when treated with 50 μM Met, regardless of the B12 treatment level. Genotoxicity was significantly reduced in the group treated with 50 μM Met and 600 pM B12. Concentrations of 50 μM Met and 600 pM B12 are an optimal combination for stabilizing the genome. It is advisable to acquire adequate amounts of Met and B12 for maintaining genome stability.

PMID:
23909731
DOI:
10.1080/01635581.2013.802000
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center