Send to

Choose Destination
See comment in PubMed Commons below
Langmuir. 2013 Aug 27;29(34):10945-58. doi: 10.1021/la402440z. Epub 2013 Aug 15.

Green synthesis and reversible dispersion of a giant fluorescent cluster in solid and liquid phase.

Author information

  • 1Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India.


A water-soluble highly fluorescent silver cluster on Au(I) surface has been synthesized with green chemistry under sunlight. The evolution of the silver cluster is synergistic, demanding gold and glutathione. The fluorescent Au(I)core-Ag(0)shell particles are huge in size and at the same time they are robust. That is why they become a deliverable fluorescing solid upon drying. Again, the giant particles run into common water miscible solvents. As a result, the fluorescence intensity increases to a great extent without any alteration of emission maxima. In this respect, acetone has been found to be the best-suited solvent. To have a universal applicability of the fluorescent clusters, the particles in the water pool of a reverse micelle have been prepared to transfer the particles into different water immiscible solvents. The comparatively lower fluorescence intensity of the particles has been ascribed to a space confinement effect. Finally, giant-cluster-impregnated yellow-orange fluorescent polymer film and fluorescent cotton wool, as well as paper substrate, have been prepared. The antibacterial activity of the fluorescent particle has also been tested involving modified cotton wool and paper substrate for Gram-negative and -positive Escherichia coli and Staphylococcus aureus, respectively.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center