Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2013 Sep 1;191(5):2351-9. doi: 10.4049/jimmunol.1202106. Epub 2013 Jul 31.

Transcription factor early growth response 3 is associated with the TGF-β1 expression and the regulatory activity of CD4-positive T cells in vivo.

Author information

1
Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.

Abstract

TGF-β1 is an important anti-inflammatory cytokine, and several regulatory T cell (Treg) subsets including CD4(+)CD25(+)Foxp3(+) Tregs and Th3 cells have been reported to exert regulatory activity via the production of TGF-β1. However, it has not yet been elucidated which transcription factor is involved in TGF-β1 transcription. Early growth response 3 (Egr-3) is a zinc-finger transcription factor that creates and maintains T cell anergy. In this study, we found that Egr-3 induces the expression of TGF-β1 in both murine and human CD4(+) T cells. Egr-3 overexpression in murine CD4(+) T cells induced the production of TGF-β1 and enhanced the phosphorylation of STAT3, which is associated with TGF-β1 transcription. Moreover, Egr-3 conferred Ag-specific regulatory activity on murine CD4(+) T cells. In collagen-induced arthritis and delayed-type hypersensitivity model mice, Egr-3-transduced CD4(+) T cells exhibited significant regulatory activity in vivo. In particular, the suppression of delayed-type hypersensitivity depended on TGF-β1. In human tonsils, we found that CD4(+)CD25(-)CD45RO(-)lymphocyte activation gene 3 (LAG3)(-) T cells express membrane-bound TGF-β1 in an EGR3-dependent manner. Gene-expression analysis revealed that CD4(+)CD25(-)CD45RO(-)LAG3(-) T cells are quite different from conventional CD4(+)CD25(+)Foxp3(+) Tregs. Intriguingly, the CD4(+)CD25(-)CD45RO(-)LAG3(-) T cells suppressed graft-versus-host disease in immunodeficient mice transplanted with human PBMCs. Our results suggest that Egr-3 is a transcription factor associated with TGF-β1 expression and in vivo regulatory activity in both mice and humans.

PMID:
23904169
DOI:
10.4049/jimmunol.1202106
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center