Send to

Choose Destination
See comment in PubMed Commons below
Braz J Med Biol Res. 2013 Jul;46(7):574-9. doi: 10.1590/1414-431X20132900. Epub 2013 Jul 30.

Myosin light chain kinase is necessary for post-shock mesenteric lymph drainage enhancement of vascular reactivity and calcium sensitivity in hemorrhagic-shocked rats.

Author information

Institute of Microcirculation, Hebei North University, Hebei, China.


Vascular hyporeactivity is an important factor in irreversible shock, and post-shock mesenteric lymph (PSML) blockade improves vascular reactivity after hemorrhagic shock. This study explored the possible involvement of myosin light chain kinase (MLCK) in PSML-mediated vascular hyporeactivity and calcium desensitization. Rats were divided into sham (n=12), shock (n=18), and shock+drainage (n=18) groups. A hemorrhagic shock model (40 ± 2 mmHg, 3 h) was established in the shock and shock+drainage groups. PSML drainage was performed from 1 to 3 h from start of hypotension in shock+drainage rats. Levels of phospho-MLCK (p-MLCK) were determined in superior mesenteric artery (SMA) tissue, and the vascular reactivity to norepinephrine (NE) and sensitivity to Ca²⁺ were observed in SMA rings in an isolated organ perfusion system. p-MLCK was significantly decreased in the shock group compared with the sham group, but increased in the shock+drainage group compared with the shock group. Substance P (1 nM), an agonist of MLCK, significantly elevated the decreased contractile response of SMA rings to both NE and Ca²⁺ at various concentrations. Maximum contractility (Emax) in the shock group increased with NE (from 0.179 ± 0.038 to 0.440 ± 0.177 g/mg, P<0.05) and Ca²⁺ (from 0.515 ± 0.043 to 0.646 ± 0.096 g/mg, P<0.05). ML-7 (0.1 nM), an inhibitor of MLCK, reduced the increased vascular response to NE and Ca²⁺ at various concentrations in the shock+drainage group (from 0.744 ± 0.187 to 0.570 ± 0.143 g/mg in Emax for NE and from 0.729 ± 0.037 to 0.645 ± 0.056 g/mg in Emax for Ca²⁺, P<0.05). We conclude that MLCK is an important contributor to PSML drainage, enhancing vascular reactivity and calcium sensitivity in rats with hemorrhagic shock.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Scientific Electronic Library Online Icon for PubMed Central
    Loading ...
    Support Center