Format

Send to

Choose Destination
See comment in PubMed Commons below
Metabolomics. 2013 Aug;9(4):757-764. Epub 2013 Jul 12.

An analysis of a 'community-driven' reconstruction of the human metabolic network.

Author information

1
School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL UK ; Manchester Institute of Biotechnology, The University of Manchester, Princess Street, Manchester, M1 7DN UK.

Abstract

Following a strategy similar to that used in baker's yeast (Herrgård et al. Nat Biotechnol 26:1155-1160, 2008). A consensus yeast metabolic network obtained from a community approach to systems biology (Herrgård et al. 2008; Dobson et al. BMC Syst Biol 4:145, 2010). Further developments towards a genome-scale metabolic model of yeast (Dobson et al. 2010; Heavner et al. BMC Syst Biol 6:55, 2012). Yeast 5-an expanded reconstruction of the Saccharomyces cerevisiae metabolic network (Heavner et al. 2012) and in Salmonella typhimurium (Thiele et al. BMC Syst Biol 5:8, 2011). A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonellatyphimurium LT2 (Thiele et al. 2011), a recent paper (Thiele et al. Nat Biotechnol 31:419-425, 2013). A community-driven global reconstruction of human metabolism (Thiele et al. 2013) described a much improved 'community consensus' reconstruction of the human metabolic network, called Recon 2, and the authors (that include the present ones) have made it freely available via a database at http://humanmetabolism.org/ and in SBML format at Biomodels (http://identifiers.org/biomodels.db/MODEL1109130000). This short analysis summarises the main findings, and suggests some approaches that will be able to exploit the availability of this model to advantage.

KEYWORDS:

Metabolic networks; Metabolism; Modelling; Networks; Systems biology

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center