Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2013 Jul 9;8(7):e69273. doi: 10.1371/journal.pone.0069273. Print 2013.

Cluster J mycobacteriophages: intron splicing in capsid and tail genes.

Author information

1
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America .

Abstract

Bacteriophages isolated on Mycobacterium smegmatis mc(2)155 represent many distinct genomes sharing little or no DNA sequence similarity. The genomes are architecturally mosaic and are replete with genes of unknown function. A new group of genomes sharing substantial nucleotide sequences constitute Cluster J. The six mycobacteriophages forming Cluster J are morphologically members of the Siphoviridae, but have unusually long genomes ranging from 106.3 to 117 kbp. Reconstruction of the capsid by cryo-electron microscopy of mycobacteriophage BAKA reveals an icosahedral structure with a triangulation number of 13. All six phages are temperate and homoimmune, and prophage establishment involves integration into a tRNA-Leu gene not previously identified as a mycobacterial attB site for phage integration. The Cluster J genomes provide two examples of intron splicing within the virion structural genes, one in a major capsid subunit gene, and one in a tail gene. These genomes also contain numerous free-standing HNH homing endonuclease, and comparative analysis reveals how these could contribute to genome mosaicism. The unusual Cluster J genomes provide new insights into phage genome architecture, gene function, capsid structure, gene mobility, intron splicing, and evolution.

PMID:
23874930
PMCID:
PMC3706429
DOI:
10.1371/journal.pone.0069273
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center