Format

Send to

Choose Destination
Cytometry B Clin Cytom. 2013 Jul 19. doi: 10.1002/cytob.21115. [Epub ahead of print]

Computational analysis optimizes the flow cytometric evaluation for lymphoma.

Author information

1
University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Abstract

BACKGROUND:

Although many clinical laboratories are adopting higher color flow cytometric assays, the approach to optimizing panel design and data analysis is often traditional and subjective. In order to address the question "What is the best flow cytometric strategy to reliably distinguish germinal center B-cell lymphoma (GC-L) from lymphoid hyperplasia (GC-H)?" we applied a computational tool that identifies target populations correlated with a desired outcome, in this case diagnosis.

DESIGN:

Cases of GC-H and GC-L with a germinal center phenotype, evaluated by flow cytometric immunophenotyping using CD45, CD20, kappa, lambda, CD19, CD5, CD10, CD38, were analyzed with flowType and RchyOptimyx to construct cellular hierarchies that best distinguished the two diagnostic groups.

RESULTS:

The population CD5-CD19+CD10+CD38- had the highest predictive power. Manual reanalysis confirmed significantly higher CD10+/CD38-B-cells in GC-L (median 12.44%, range 0.74 - 63.29, n=52) than GC-H (median 0.24%, 0.03 - 4.49, n=48, p=0.0001), but was not entirely specific. Difficulties encountered using this computational approach included the presence of CD10+ granulocytes, continuously variable B-cell expression of CD38, more variable intensity antigen staining in GC-L and inability to assess the contribution of light chain restriction.

CONCLUSION:

Computational analysis with construction of cellular hierarchies related to diagnosis helped guide manual analysis of high dimensional flow cytometric data. This approach highlighted the diagnostic utility of CD38 expression in the evaluation of B-cells with a CD10+ GC phenotype. In contrast to computational analysis of non-neoplastic cell populations, evaluation of neoplastic cells must be able to take into consideration increased variability in antigen expression.

KEYWORDS:

CD38; computational analysis; flow cytometry; lymphoma

PMID:
23873623
DOI:
10.1002/cytob.21115
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center