Format

Send to

Choose Destination
See comment in PubMed Commons below
Circ Arrhythm Electrophysiol. 2013 Aug;6(4):776-83. doi: 10.1161/CIRCEP.113.000448. Epub 2013 Jul 19.

Electrical homogenization of ventricular scar by application of collagenase: a novel strategy for arrhythmia therapy.

Author information

1
UCLA Cardiac Arrhythmia Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Cardiac Anesthesia, University of California, Los Angeles, CA.

Abstract

BACKGROUND:

Radiofrequency ablation for ventricular tachycardia is an established therapy. Use of chemical agents for scar homogenization represents an alternative approach. The purpose of this study was to characterize the efficacy of collagenase (CLG) application on epicardial ventricular scar homogenization.

METHODS AND RESULTS:

Myocardial infarcts were created in Yorkshire pigs (n=6) by intracoronary microsphere injection. After 46.6±4.3 days, CLG type 2, type 4, and purified CLG were applied in vitro (n=1) to myocardial tissue blocks containing normal myocardium, border zone, and dense scar. Histopathologic studies were performed to identify the optimal CLG subtype. In vivo high-density electroanatomic mapping of the epicardium was also performed, and border zone and dense scar surface area and late potentials were quantified before and after CLG-4 application (n=5). Of the CLG subtypes tested in vitro, CLG-4 provided the best scar modification and least damage to normal myocardium. During in vivo testing, CLG-4 application decreased border zone area (21.3±14.3 to 17.1±11.1 mm(2), P=0.043) and increased dense scar area (9.1±10.3 to 22.0±20.6 mm(2), P=0.043). The total scar area before and after CLG application was 30.4±23.4 and 39.2±29.5 mm(2), respectively (P=0.08). Late potentials were reduced by CLG-4 application (28.8±21.8 to 13.8±13.1, P=0.043). During CLG-4 application (50.0±15.5 minutes), systolic blood pressure and heart rate were not significantly changed (68.0±7.7 versus 61.8±5.3 mmHg, P=0.08; 77.4±7.3 versus 78.8±6.0 beats per minute, P=0.50, respectively).

CONCLUSIONS:

Ventricular epicardial scar homogenization by CLG-4 application is feasible and effective. This represents the first report on bioenzymatic ablation of arrhythmogenic tissue as an alternative strategy for lesion formation.

KEYWORDS:

bioenzymatic ablation; collagenase; radiofrequency; scar homogenization; ventricular tachycardia

PMID:
23873142
PMCID:
PMC3872289
DOI:
10.1161/CIRCEP.113.000448
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center