Format

Send to

Choose Destination
See comment in PubMed Commons below
Biol Trace Elem Res. 2013 Sep;154(3):403-11. doi: 10.1007/s12011-013-9753-1. Epub 2013 Jul 20.

Hepatic and hippocampus iron status is not altered in response to increased serum ceruloplasmin and serum "free" copper in Wistar rat model for non-Wilsonian brain copper toxicosis.

Author information

1
Department of Biochemistry, PGIMER, Chandigarh, India.

Abstract

Copper and iron dyshomeostasis has been implicated directly or indirectly in the pathogenesis of neurodegenerative diseases. Previously, we have shown the first in vivo evidence of significant increase in the hippocampus copper and zinc content with spatial memory impairments, astrocytes swelling (Alzheimer type-II cells) coupled with increase in the number of astrocytes, copper deposition in the choroid plexus, and degenerated neurons in copper-intoxicated Wistar rats. In continuation with our previous study, the aim of this study was to further investigate the effects of intraperitoneally injected copper lactate (0.15 mg Cu/100 g body weight) daily for 90 days on serum "free" copper levels, iron levels in the liver, and hippocampus by atomic absorption spectrophotometry and histopathological study of the liver and brain tissues of Wistar rats using Perls' Prussian blue (PPB) stain. A massive significant increase in serum "free" copper (79.48% increase) along with strong correlation (r = 0.978) was found between serum copper and serum "free" copper in copper-intoxicated rats. No significant difference was detected in hepatic and hippocampus iron levels between control and copper-intoxicated rats. PPB stain demonstrated very few scattered grade 1 haemosiderin deposits within sinusoidal cells predominantly Kupffer cells; however, brain sections were negatively stained with PPB stain. In conclusion, the current study demonstrates that chronic copper toxicity causes increase in serum "free" copper, which may serve as predisposing factor for the development of neurodegeneration and memory deficits, and grade 1 haemosiderin deposition in Kupffer cells without altering hepatic and hippocampus iron levels in male Wistar rats.

PMID:
23872735
DOI:
10.1007/s12011-013-9753-1
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center