Send to

Choose Destination
See comment in PubMed Commons below
Cell Rep. 2013 Jul 25;4(2):248-54. doi: 10.1016/j.celrep.2013.06.030. Epub 2013 Jul 18.

Thermodynamic stabilization of the folded domain of prion protein inhibits prion infection in vivo.

Author information

Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.


Prion diseases, or transmissible spongiform encephalopathies (TSEs), are associated with the conformational conversion of the cellular prion protein, PrP(C), into a protease-resistant form, PrP(Sc). Here, we show that mutation-induced thermodynamic stabilization of the folded, α-helical domain of PrP(C) has a dramatic inhibitory effect on the conformational conversion of prion protein in vitro, as well as on the propagation of TSE disease in vivo. Transgenic mice expressing a human prion protein variant with increased thermodynamic stability were found to be much more resistant to infection with the TSE agent than those expressing wild-type human prion protein, in both the primary passage and three subsequent subpassages. These findings not only provide a line of evidence in support of the protein-only model of TSEs but also yield insight into the molecular nature of the PrP(C)→PrP(Sc) conformational transition, and they suggest an approach to the treatment of prion diseases.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center