Format

Send to

Choose Destination
Am J Stem Cells. 2013 Jun 30;2(2):119-31. Print 2013.

A robust method to derive functional neural crest cells from human pluripotent stem cells.

Author information

1
Gladstone Institute of Cardiovascular Disease 1650 Owens Street, San Francisco, CA 94158, USA.

Abstract

Neural crest (NC) cells contribute to the development of many complex tissues of all three germ layers during embryogenesis, and its abnormal development accounts for several congenital birth defects. Generating NC cells-including specific subpopulations such as cranial, cardiac, and trunk NC cells-from human pluripotent stem cells will provide a valuable model system to study human development and disease. Here, we describe a rapid and robust NC differentiation method called "LSB-short" that is based on dual SMAD pathway inhibition. This protocol yields high percentages of NC cell populations from multiple human induced pluripotent stem and human embryonic stem cell lines in 8 days. The resulting cells can be propagated easily, retain NC marker expression over multiple passages, and can spontaneously differentiate into several NC-derived cell lineages, including smooth muscle cells, peripheral neurons, and Schwann cells. NC cells generated by this method represent cranial, cardiac and trunk NC subpopulations based on global gene expression analyses, are similar to in vivo analogues, and express a common set of NC alternative isoforms. Functionally, they are also able to migrate appropriately in response to chemoattractants such as SDF-1, FGF8b, and Wnt3a. By yielding NC cells that likely represent all NC subpopulations in a shorter time frame than other published methods, our LSB-short method provides an ideal model system for further studies of human NC development and disease.

KEYWORDS:

Neural crest; SMAD inhibition; differentiation; human; induced pluripotent stem cells; migration

PMID:
23862100
PMCID:
PMC3708511

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center