Format

Send to

Choose Destination
See comment in PubMed Commons below
J Obes. 2013;2013:874981. doi: 10.1155/2013/874981. Epub 2013 Jun 4.

Obesity-related metabolomic analysis of human subjects in black soybean peptide intervention study by ultraperformance liquid chromatography and quadrupole-time-of-flight mass spectrometry.

Author information

1
Department of Food Metabolism and Nutrition, Korea Food Research Institute, 516 Paekhyon-dong, Pundang-ku, Songnam, Kyongki-do 463-747, Republic of Korea.

Abstract

The present study aimed to identify key metabolites related to weight reduction in humans by studying the metabolic profiles of sera obtained from 34 participants who underwent dietary intervention with black soybean peptides (BSP) for 12 weeks. This research is a sequel to our previous work in which the effects of BSP on BMI and blood composition of lipid were investigated. Sera of the study were subjected to ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), and the data were analyzed using partial least-squares discriminate analysis (PLS-DA) score plots. Body mass index and percent body fat of the test group were reduced. Levels of betaine, benzoic acid, pyroglutamic acid, pipecolic acid, N-phenylacetamide, uric acid, l-aspartyl-l-phenylalanine, and lysophosphatidyl cholines (lysoPCs) (C18:1, C18:2, C20:1, and C20:4) showed significant increases. Levels of l-proline, valine, l-leucine/isoleucine, hypoxanthine, glutamine, l-methionine, phenylpyruvic acid, several carnitine derivatives, and lysoPCs (C14:0, PC16:0, C15:0, C16:0, C17:1, C18:0, and C22:0) were significantly decreased. In particular, lysoPC 16:0 with a VIP value of 12.02 is esteemed to be the most important metabolite for evaluating the differences between the 2 serum samples. Our result confirmed weight-lowering effects of BSP, accompanied by favorable changes in metabolites in the subjects' blood. Therefore, this research enables us to better understand obesity and increases the predictability of the obesity-related risk by studying metabolites present in the blood.

PMID:
23862058
PMCID:
PMC3686146
DOI:
10.1155/2013/874981
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Hindawi Publishing Corporation Icon for PubMed Central
    Loading ...
    Support Center