Send to

Choose Destination
PLoS One. 2013 Jul 8;8(7):e68114. doi: 10.1371/journal.pone.0068114. Print 2013.

Y-chromosome DNA is present in the blood of female dogs suggesting the presence of fetal microchimerism.

Author information

Comparative Oncology and Epigenetics Laboratory, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, USA.


Fetal microchimerism has been suggested to play contradictory roles in women's health, with factors including age of the recipient, time elapsed since microchimerism occurred, and microchimeric cell type modulating disease. Both beneficial and harmful effects have been identified in wound healing and tissue regeneration, immune mediated disease, and cancer. This area of research is relatively new, and hindered by the time course from occurrence of fetal microchimerism to the multi-factorial development of disease. Dogs represent an excellent model for study of fetal microchimerism, as they share our environment, have a naturally condensed lifespan, and spontaneously develop immune-mediated diseases and cancers similar to their human counterparts. However, fetal microchimerism has not been described in dogs. These experiments sought preliminary evidence that dogs develop fetal microchimerism following pregnancy. We hypothesized that Y chromosomal DNA would be detected in the peripheral blood mononuclear cells of female dogs collected within two months of parturition. We further hypothesized that Y chromosomal DNA would be detected in banked whole blood DNA samples from parous female Golden Retrievers with at least one male puppy in a prior litter. Amplification of DNA extracted from five female Golden Retrievers that had whelped within the two months prior to collection revealed strong positive bands for the Y chromosome. Of banked, parous samples, 36% yielded positive bands for the Y chromosome. This is the first report of persistent Y chromosomal DNA in post-partum female dogs and these results suggest that fetal microchimerism occurs in the canine species. Evaluation of the contributions of fetal microchimeric cells to disease processes in dogs as a model for human disease is warranted.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center