Format

Send to

Choose Destination
Biochemistry. 2013 Jul 23;52(29):4881-90. doi: 10.1021/bi400524h. Epub 2013 Jul 15.

Following DNA chain extension and protein conformational changes in crystals of a Y-family DNA polymerase via Raman crystallography.

Author information

1
Department of Biochemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States.

Abstract

Y-Family DNA polymerases are known to bypass DNA lesions in vitro and in vivo. Sulfolobus solfataricus DNA polymerase (Dpo4) was chosen as a model Y-family enzyme for investigating the mechanism of DNA synthesis in single crystals. Crystals of Dpo4 in complexes with DNA (the binary complex) in the presence or absence of an incoming nucleotide were analyzed by Raman microscopy. (13)C- and (15)N-labeled d*CTP, or unlabeled dCTP, were soaked into the binary crystals with G as the templating base. In the presence of the catalytic metal ions, Mg(2+) and Mn(2+), nucleotide incorporation was detected by the disappearance of the triphosphate band of dCTP and the retention of *C modes in the crystal following soaking out of noncovalently bound C(or *C)TP. The addition of the second coded base, thymine, was observed by adding cognate dTTP to the crystal following a single d*CTP addition. Adding these two bases caused visible damage to the crystal that was possibly caused by protein and/or DNA conformational change within the crystal. When d*CTP is soaked into the Dpo4 crystal in the absence of Mn(2+) or Mg(2+), the primer extension reaction did not occur; instead, a ternary protein·template·d*CTP complex was formed. In the Raman difference spectra of both binary and ternary complexes, in addition to the modes of d(*C)CTP, features caused by ring modes from the template/primer bases being perturbed and from the DNA backbone appear, as well as features from perturbed peptide and amino acid side chain modes. These effects are more pronounced in the ternary complex than in the binary complex. Using standardized Raman intensities followed as a function of time, the C(*C)TP population in the crystal was maximal at ∼20 min. These remained unchanged in the ternary complex but declined in the binary complexes as chain incorporation occurred.

PMID:
23855392
PMCID:
PMC3855550
DOI:
10.1021/bi400524h
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center